Critical role of CXCL16 in hypertensive kidney injury and fibrosis.

نویسندگان

  • Yunfeng Xia
  • Mark L Entman
  • Yanlin Wang
چکیده

Recent evidence indicates that inflammation plays a critical role in the initiation and progression of hypertensive kidney disease. However, the signaling mechanisms underlying the induction of inflammation are poorly understood. We found that chemokine (C-X-C motif) ligand 16 (CXCL16) was induced in renal tubular epithelial cells in response to angiotensin II in a nuclear factor-κB-dependent manner. To determine whether CXCL16 plays a role in angiotensin II-induced renal inflammation and fibrosis, wild-type and CXCL16 knockout mice were infused with angiotensin II at 1500 ng/kg per minute for up to 4 weeks. Wild-type and CXCL16 knockout mice had comparable blood pressure at baseline. Angiotensin II treatment led to an increase in blood pressure that was similar between wild-type and CXCL16 knockout mice. CXCL16 knockout mice were protected from angiotensin II-induced renal dysfunction, proteinuria, and fibrosis. CXCL16 deficiency suppressed bone marrow-derived fibroblast accumulation and myofibroblast formation in the kidneys of angiotensin II-treated mice, which was associated with less expression of extracellular matrix proteins. Furthermore, CXCL16 deficiency inhibited infiltration of F4/80(+) macrophages and CD3(+) T cells in the kidneys of angiotensin II-treated mice compared with wild-type mice. Finally, CXCL16 deficiency reduced angiotensin II-induced proinflammatory cytokine expressions in the kidneys. Taken together, our results indicate that CXCL16 plays a pivotal role in the pathogenesis of angiotensin II-induced renal injury and fibrosis through regulation of macrophage and T cell infiltration and bone marrow-derived fibroblast accumulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CXCL16 regulates renal injury and fibrosis in experimental renal artery stenosis.

Recent studies have shown that inflammation plays a critical role in the initiation and progression of hypertensive kidney disease, including renal artery stenosis. However, the signaling mechanisms underlying the induction of inflammation are poorly understood. We found that CXCL16 was induced in the kidney in a murine model of renal artery stenosis. To determine whether CXCL16 is involved in ...

متن کامل

CXCL16 Deficiency Attenuates Renal Injury and Fibrosis in Salt-Sensitive Hypertension

Inflammation plays an important role in the pathogenesis of hypertensive kidney disease. However, the molecular mechanisms underlying the induction of inflammation are not completely understood. We have found that CXCL16 is induced in the kidney in deoxycorticosterone acetate (DOCA)-salt hypertension. Here we examined whether CXCL16 is involved in DOCA-salt-induced renal inflammation and fibros...

متن کامل

CXCL16 recruits bone marrow-derived fibroblast precursors in renal fibrosis.

Although fibroblasts are responsible for the production and deposition of extracellular matrix in renal fibrosis, their origin is controversial. Circulating fibroblast precursors may contribute to the pathogenesis of renal fibrosis, but the signaling mechanisms underlying the recruitment of bone marrow-derived fibroblast precursors into the kidney in response to injury are incompletely understo...

متن کامل

CXCL16 regulates cisplatin-induced acute kidney injury

The pathogenesis of cisplatin-induced acute kidney injury (AKI) is characterized by tubular cell apoptosis and inflammation. However, the molecular mechanisms are not fully understood. We found that CXCL16 was induced in renal tubular epithelial cells in response to cisplatin-induced AKI. Therefore, we investigated whether CXCL16 played a role in cisplatin-induced tubular cell apoptosis and inf...

متن کامل

Circulating CXCL16 in Diabetic Kidney Disease.

BACKGROUND/AIMS Chronic kidney disease and, specifically, diabetic kidney disease, is among the fastest increasing causes of death worldwide. A better understanding of the factors contributing to the high mortality may help design novel monitoring and therapeutic approaches. CXCL16 is both a cholesterol receptor and a chemokine with a potential role in vascular injury and inflammation. We aimed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Hypertension

دوره 62 6  شماره 

صفحات  -

تاریخ انتشار 2013